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A wide variety of real-life networks share two remarkable generic topological properties: scale-free behavior
and modular organization, and it is natural and important to study how these two features affect the dynamical
processes taking place on such networks. In this paper, we investigate a simple stochastic process—trapping
problem, a random walk with a perfect trap fixed at a given location, performed on a family of hierarchical
networks that exhibit simultaneously striking scale-free and modular structure. We focus on a particular case
with the immobile trap positioned at the hub node having the largest degree. Using a method based on
generating functions, we determine explicitly the mean first-passage time �MFPT� for the trapping problem,
which is the mean of the node-to-trap first-passage time over the entire network. The exact expression for the
MFPT is calculated through the recurrence relations derived from the special construction of the hierarchical
networks. The obtained rigorous formula corroborated by extensive direct numerical calculations exhibits that
the MFPT grows algebraically with the network order. Concretely, the MFPT increases as a power-law function
of the number of nodes with the exponent much less than 1. We demonstrate that the hierarchical networks
under consideration have more efficient structure for transport by diffusion in contrast with other analytically
soluble media including some previously studied scale-free networks. We argue that the scale-free and modular
topologies are responsible for the high efficiency of the trapping process on the hierarchical networks.
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I. INTRODUCTION

Complex networks are a powerful and versatile math-
ematical tool for representing and modeling structure of
complex systems �1,2�, and their wide applications in differ-
ent areas have made them become a subject of a large vol-
ume of research in the past decade �3,4�. Within the general
framework of complex networks, scientists can offer in
qualitative terms the detailed microscopic description of
structural properties and complexity of real-life systems. Ex-
tensive empirical analysis on diverse real systems has un-
veiled that many, perhaps most, real-world networks are si-
multaneously characterized by the two most remarkable
features: scale-free behavior �5� and modular organization
�6–8�. The scale-free nature of a network means that its de-
gree distribution P�k� follows a power law as P�k��k−� with
the degree distribution exponent in the range of 2���3,
while the modular organization implies that the network is
formed by groups �modules� of nodes that have a signifi-
cantly higher interconnection density compared to the overall
density of the whole network. The important finding of these
two fundamental natures has led to the rising of research on
some outstanding issues in the field of complex networks
such as exploring the generation mechanisms for scale-free
behavior �1,2�, detecting and characterizing modular struc-
ture �9–12�, and so on. On the other hand, it has been shown
that the two characteristics are closely related to other struc-

tural properties such as average path length �13,14� and clus-
tering coefficient �8�.

In principle, one of the main reasons for studying struc-
tural properties of complex networks is to understand how
the dynamical processes are influenced by the underlying
topological structure �15�. Among a plethora of random pro-
cesses, random walks with wide range of distinct applica-
tions to many science branches have attracted a considerable
amount of recent attention within the physics community
�16–31�. Particularly, trapping issue, an integral major theme
of random walks, is relevant to a variety of contexts, includ-
ing target research �32,33�, photon-harvesting processes in
photosynthetic cells �34�, and characterizing similarities be-
tween the elements of a database �35� has led to an increas-
ing number of theoretical and practical investigations over
the last several decades. Numerous authors have made con-
certed efforts to study trapping problem in different media
including regular lattices �36�, Sierpinski fractals �37,38�, T
fractal �39�, small-world networks �40�, and scale-free net-
works �41–45�, as well as other structures �46–48�. These
studies unclosed many unusual and exotic phenomena of
trapping on diverse graphs. However, the trapping process on
scale-free networks with modular structure remains less un-
derstood, in spite of the facts that modularity plays an im-
portant role in shaping up scale-free networks �49�, and that
taking into account the modular structure of scale-free net-
works leads to a better understanding of how the underlying
systems work �50�.

In this paper, we study the classic trapping problem on a
class of hierarchical networks �7,8�, which is a random walk
problem with a single immobile trap positioned at a given
site absorbing all walks visiting it. Here we focus on a par-
ticular case with the trap located at the node with the highest
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degree. The networks studied can capture simultaneously
scale-free behavior and modular structure. Moreover, the net-
works belong to a deterministic growing type of networks,
which have received much attention from the scientific com-
munities and have proved to be a useful tool �51–61�. The
deterministic nature of the hierarchical networks makes it
possible to investigate analytically the trapping process de-
fined on them. By applying the formalism �62,63� of gener-
ating functions �64� for random walks, we derive the rigor-
ous solution to the mean first-passage time �MFPT� that
characterizes the trapping process. The obtained exact result
shows that the MFPT scales algebraically with the number of
network nodes. We also compare the behavior of the trapping
problem on the hierarchical networks with those of other
networks and show that the hierarchical networks can be
helpful for enhancing the efficiency of the trapping process.

II. MODULAR SCALE-FREE NETWORKS

Let us introduce the model for the hierarchical scale-free
networks with a modular structure, which can be constructed
in an iterative way �7,8�. We denote by Hg the network
model after g �g�1� iterations �number of generations�. Ini-
tially �g=1�, the network consists of a central node, called
the hub �root� node, and M −1 peripheral �external� nodes
with M �3. All these initial M nodes are fully connected to
each other forming a complete graph. At the second genera-
tion �g=2�, we generate M −1 copies of H1 and connect the
M −1 external nodes of each replica to the root of the origi-
nal H1. The hub of the original H1 and the �M −1�2 periph-
eral nodes in the replicas become the hub and peripheral
nodes of H2, respectively. Suppose one has Hg−1, the next
generation network Hg can be obtained from Hg−1 by adding
M −1 replicas of Hg−1 with their external nodes being linked
to the hub of the original Hg−1 unit. In Hg, its hub is the hub
of the original Hg−1, and its external nodes are composed of
all the peripheral nodes of the M −1 copies of Hg−1. Repeat-
ing indefinitely the replication and connection steps, we ob-
tain the hierarchical modular scale-free networks. Figure 1
illustrates the construction process of a network for the par-
ticular case of M =5 showing the first three iterations.

According to the network construction, one can see that
Hg, the network of gth generation, is characterized by two
parameters g and M, with the former being the number of

generations and the latter representing the replication factor.
In Hg, the number of nodes, often called order of the network
denoted as Ng, is Ng=Mg. All these nodes can be classified
into the following four sets �65,66�: peripheral node set P,
locally peripheral node set Pm �1�m�g�, set H only con-
sisting of the hub node of Hg, and the local hub set Hm �1
�m�g�; see Fig. 2. The cardinalities, defined as the number
of nodes in a set, of the four sets are

�P� = �M − 1�g, �1�

�Pm� = �M − 1�mMg−�m+1�, �2�

�H� = 1, �3�

and

�Hm� = �M − 1�Mg−�m+1�, �4�

respectively. For Hg, all nodes belonging to the same set
have identical connectivity �i.e., degree�, which are known
exactly. For example, the degree Kh�g� of the hub node is the
largest; it has a value of

Kh�g� = �
gi=1

g

�M − 1�gi =
M − 1

M − 2
��M − 1�g − 1� . �5�

Any node in P has the degree

Kp�g� = g + M − 2. �6�

Again, for instance, the degree of a node in Pm is

Kp,m�g� = m + M − 2, �7�

and an arbitrary node in Hm has a degree of

Kh,m�g� = �
gi=1

m

�M − 1�gi =
M − 1

M − 2
��M − 1�m − 1� . �8�

Thus, the sum of degrees for all nodes in Hg is

FIG. 1. The iterative construction process of a hierarchical net-
work for the case of M =5. Notice that the diagonal nodes are also
connected—links not visible.

FIG. 2. �Color online� Classification of nodes in network H3 for
the case of M =4. The filled circles, open circles, full square, and
triangles represent peripheral nodes, locally peripheral nodes, hub
node, and locally hub nodes, respectively.
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Dg = Kh�g� + �
m=1

g−1

Kh,m�g��Hm� + Kp�g��P� + �
m=1

g−1

Kp,m�g��Pm�

= �3M − 2��M − 1�Mg−1 − 2�M − 1�g+1, �9�

and the mean degree averaged over all nodes is

�k	g =
2Dg

Ng
= 2�M − 1�
3 −

2

M
− 2�M − 1

M
�g
 , �10�

which is approximately equal to 2�M −1��3M −2� /M in the
limit of infinite g.

The hierarchical networks present some typical properties
of real systems in nature and society �65�. They are scale free
with the degree distribution exponent �=1+ln M / ln�M −1�.
The average path length, defined as the shortest distance av-
eraged over all pairs of nodes, scales logarithmically with the
number of nodes. In the large network order limit, the aver-
age clustering coefficient tends to a large constant dependent
on M. Thus, the whole family of networks exhibits small-
world behavior �67�. In addition, the betweenness of nodes in
the networks follows the same power-law distribution PB
�B−2 irrespective of M. In particular, the networks show an
obvious modular structure. All these characteristics are not
shared by other models. The peculiar topological features
make the networks unique within the category of scale-free
networks; it therefore is worthwhile to investigate various
dynamical processes running on them. In what follows we
will study the trapping problem on this class of modular
networks to uncover the influence of the particular topolo-
gies on the trapping process.

III. FORMULATION OF THE TRAPPING PROBLEM

In this section we formulate the trapping problem on the
family of hierarchical scale-free networks Hg, which is actu-
ally a simple unbiased Markovian random walk of a particle
in the presence of a trap or a perfect absorber located on a
given node. To facilitate the description, we distinguish dif-
ferent nodes in Hg by assigning each of them a labeling in
the following way. The hub node in Hg has label 1; the other
M −1 peripheral nodes in H1 are labeled as 2, 3, and M −1,
respectively. Assume that we have labeled nodes in Hg−1
consecutively by 1, 2, and Mg−1; in the next generation g, we
keep the labels of nodes in the original Hg−1 unchanged and
label only the nodes belonging to the M −1 copies of Hg−1 by
assigning to each node a different integer from Mg−1+1 to
Mg. In this way, every node in Hg is labeled by a unique
integer from 1 to Ng=Mg; see Fig. 3.

For convenience, we continue to represent Hg by its adja-
cency matrix Ag of order Ng�Ng, whose �i , j� element aij is
defined as follows: aij =1 if i and j are neighboring nodes
and aij =0 otherwise. Then the degree, di�g�, of node i is
given by di�g�=� j

Ngaij, the diagonal degree matrix Zg of Hg
is Zg=diag(d1�g� ,d2�g� , . . . ,di�g� , . . . ,dNg

�g�), and the nor-
malized Laplacian matrix of Hg is provided by Lg=Ig
−Zg

−1Ag, where Ig is the Ng�Ng identity matrix.
Before proceeding further, let us introduce the so-called

discrete-time random walk on Hg. At each time step, the
particle jumps from its current location to any of its nearest

neighbors with equal probability. According to this rule, at
time t, a particle located at a node i will hop to one of its
di�g� neighbors, say u, with the transition probability
aiu /di�g�. Suppose that the particle starts off from node i at
t=0, then the jumping probability Pij of going from i to j at
time t is governed by the following master equation �22�:

Pij�t + 1� = �
v=1

Ng avj

dv�g�
Piv�t� . �11�

We next focus the trapping problem on Hg with the trap fixed
on the hub node, i.e., node 1, represented as iT. The particular
choice for the trap position allows to compute analytically
the MFPT, which will be discussed in detail in the following
section. Similar to the standard discrete-time random walks,
during the trapping process, in a single time step, the par-
ticle, starting from any node except the trap iT, jumps to any
of its nearest neighbors with the same probability. What we
are concerned with is the expected time that the particle
spends, starting from a source node before being trapped,
which is in fact a random variable. Let Xi be the expected
time, frequently called first-passage time �FPT� or trapping
time, for a walker, starting from node i, to first arrive at the
trap iT. In order to determine Xi, we define F�Xi= t� to be the
probability for the particle, starting from point i, to first hit
the trap after t steps. Notice that since the Markov chain �68�
representing such a random walk is ergodic, the particle will
be eventually trapped independently of the origin implying
that �t=0

� F�Xi= t�=1 holds for all i. It is easily known that the
set of these interesting quantities obeys the following recur-
rence relation:

F�Xi = t� = �
v=1

Ng aiv

di�g�
F�Xv = t − 1� , �12�

where i� iT.

Let F̃i�z� be the corresponding generating function of
quantity F�Xi= t�:

FIG. 3. Labels of all nodes in H3 for the case of M =5 corre-
sponding to the g=3 case in Fig. 1.
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F̃i�z� = �
t=0

�

F�Xi = t�zt, �13�

which encapsulates all the information contained in the dis-
crete probability distribution F�Xi= t�. For example, the ex-

pected value Xi is the first derivative of F̃i�z� evaluated at z
=1.

Let F̃�z� stand for the �Ng−1�-dimensional vector

�F̃2�z� , F̃3�z� , . . . , F̃Ng
�z���, where the superscript � repre-

sents the transpose of the vector. According to Eqs. �12� and
�13�, we have

F̃�z� = zWF̃�z� , �14�

where W is a matrix with order �Ng−1�� �Ng−1� with entry
wij =aij /di�g�. Differentiating the two sides of Eq. �14� with
respect to z and doing some simple algebra operations, we
have

�I − zW�F̃��z� − WF̃�z� = 0 , �15�

in which I is the identity matrix with order �Ng−1�� �Ng
−1�; 0 is the �Ng−1�-dimensional zero vector �0,0 , . . . ,0��.
Setting z=1 in Eq. �15� leads to

F̃��1� = �I − W�−1WF̃�1� = �I − W�−1e , �16�

where e= �1,1 , . . . ,1�� is the �Ng−1�-dimensional unit vec-
tor. Actually, �I−W�−1 in Eq. �16� is the fundamental matrix
of the Markov chain representing the unbiased random walk,
and I−W is a submatrix of the normalized discrete Laplacian
matrix Lg of Hg, which is obtained from Lg by removing
from Lg the first row and column corresponding to the trap.

From Eq. �16�, the mean first-passage time, �T	g, which is
the average of Xi over all initial nodes distributed uniformly
over nodes in Hg other than the trap, is given by

�T	g =
1

Ng − 1�
i=2

Ng

Xi =
1

Ng − 1�
i=2

Ng

�
j=2

Ng

lij , �17�

where lij is the corresponding �i , j� element of matrix �I
−W�−1, which is the mean time that the particle spends at
node i starting from node j �69�.

Equation �17� shows that the problem of calculating
MFPT �T	g is reduced to finding the sum of all elements of
matrix �I−W�−1. Since the order of �I−W� is �Ng−1�
� �Ng−1�, where Ng increases exponentially with g, for large
g, inverting matrix �I−W� is prohibitively time and memory
consuming, making it intractable to obtain �T	g through di-
rect calculation from Eq. �17�; one can compute directly the
MFPT only for the first several generations �see Fig. 4�.
Hence, an alternative method of computing MFPT becomes
necessary. In �70�, to allow for a drastic reduction in compu-
tational cost, a scheme was proposed mapping the original
Markov process on another Markov process. Although the
method can bring down the computational efforts, it is an
approximate one. Fortunately, the special recursive construc-
tion of the hierarchical networks allows to calculate analyti-
cally MFPT to obtain an explicit solution for arbitrary gen-
eration g. In the next section, we will provide the detailed

process for the derivation of MFPT using a method signifi-
cantly different from that applied in �41–43,45�.

IV. CLOSED-FORM SOLUTION TO MEAN FIRST-
PASSAGE TIME

Prior to deriving the general formula for MFPT, �T	g, for
the trapping issue on Hg, we first define some related quan-
tities. Let Pg�t� denote the probability that, at the generation
g, the particle starting from any peripheral node in P first
arrives at the hub after t jumps; and let Qg�t� represent the
probability that the walker originating from the hub to first
reach any node belonging to P after t steps. Then, the fol-
lowing fundamental relations can be established:

Pg�t� =
�t,1

Kp�g�
+

M − 2

Kp�g�
Pg�t − 1�

+
1

Kp�g� �
m=1

g−1

�
i=1

t−1

Qm�i�Pg�t − 1 − i� �18�

and

Qg�t� =
�M − 1�g

Kh�g�
�t,1 + �

m=1

g−1

�
i=1

t−1
�M − 1�m

Kh�g�
Pm�i�Qg�t − 1 − i� ,

�19�

where �t,1 is the Kronecker delta function that is defined as
follows: �t,1=1 if t is equal to 1, and �t,1=0 otherwise. Note
that in Eqs. �18� and �19�, the equivalence of nodes in the
same set �e.g., P or Pm� was used.

The three terms on the right-hand side �rhs� of Eq. �18�
can be elaborated as follows: the first term accounts for the
probability that the walker takes only one time step to first
reach the hub; the second term on the rhs explains the case
that the particle gets first to one of its M −2 neighbors be-
longing to P in one time step, and then it takes more t−1
steps to first arrive at the target node; the last term on the rhs
describes the probability of the process in which the walker
first makes a jump to a local hub node belonging to Pm, then

FIG. 4. �Color online� Mean first-passage time �T	g as a function
of the iteration g on a semilogarithmic scale for two cases of M
=3 and M =4. The filled symbols are the data coming from genuine
simulations of the trapping process; the empty squares and circles
represent the numerical results obtained by direct calculation from
Eq. �17�; while the empty pentagons and hexagons correspond to
the exact values given by Eq. �36�.
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it takes i time steps, starting from the local hub, to hit one of
the nodes in P, and continues to jump more t−1− i steps to
first reach the hub.

Analogously, the two terms on the rhs of Eq. �19� can be
understood based on the following two processes. The first
term explains the occurring probability of the process that
the walker, starting from the hub, only needs one time step to
reach a peripheral node in P. The second term represents the
happening probability of such a process that the particle,
originating from the hub, first makes one jump to a local
peripheral node in Pm, then makes i jumps to the hub, and
proceeds to the destination �one of the nodes in P�, taking
more t−1− i time steps.

Equations �18� and �19� provide the two basic relations
governing the trapping problem performing on Hg, from
which almost all subsequent results are derived from. As
shown in the preceding section, although we are concerned
about only the fundamental quantity �namely, MFPT�, the
direct calculations are practically hard and intractable for
large networks. Nevertheless, the particular construction of
the networks allows to overcome this difficulty in virtue of
the powerful mathematical technique of generating functions
�64�, through which we can compute and determine the
MFPT �F	g indirectly.

First, we define two generating functions, P̃g�x� and

Q̃g�x�, for the probability distribution of first-passage time
described in Eqs. �18� and �19�, which can be written as

P̃g�x� = �
t=0

�

Pg�t�xt =
x

Kp�g�
+

M − 2

Kp�g�
xP̃g�x�

+
x

Kp�g� �
m=1

g−1

Q̃m�x�P̃g�x� �20�

and

Q̃g�x� = �
t=0

�

Qg�t�xt =
�M − 1�g

Kh�g�
x +

Q̃g�x�
Kh�g�

x�
m=1

g−1

�M − 1�mP̃m�x� .

�21�

After some algebraic operations, Eqs. �20� and �21� can be
recast, respectively, as

P̃g�x�
Kp�g�
x

− �M − 2� − �
m=1

g−1

Q̃m�x�
 = 1 �22�

and

Q̃g�x�
 Kh�g�
�M − 1�g

1

x
− �

m=1

g−1

�M − 1�m−gP̃m�x�
 = 1. �23�

Let Tg
P denote the first-passage time for a walker starting

from an arbitrary node in P to reach the hub for the first time,
which is in fact the number of steps for the walker originat-
ing from any node in P to first visit the hub. Let Tg

H stand for
the FPT needed for a particle initially located at the hub to
first hit any node in P. Then, according to the property of
generating functions, the two quantities Tg

P and Tg
H are given

separately by

Tg
P = � d

dx
P̃g�x��

x=1
�24�

and

Tg
H = � d

dx
Q̃g�x��

x=1
. �25�

Differentiating, respectively, both sides of Eqs. �22� and �23�
with respect to x and setting x=1, we obtain the following
two coupled relations:

Tg
P = g + M − 2 + �

m=1

g−1

Tm
H �26�

and

Tg
H =

Kh�g�
�M − 1�g +

1

�M − 1�g �
m=1

g−1

�M − 1�mTm
P . �27�

From the above two coupled equations, it is not difficult to
have

Tg+1
P − Tg

P = 1 + Tg
H �28�

and

�M − 1�Tg+1
H − Tg

H = M − 1 + Tg
P. �29�

Considering the initial conditions T2
P=M +1 and T2

H= �2M
−1� / �M −1�, we can solve the simultaneous equations, i.e.,
Eqs. �28� and �29�, to obtain

Tg
P = �3M − 8 +

7M − 2

M2 �� M

M − 1
�g

− 2M + 3 �30�

and

Tg
H = �3 −

5M − 2

M2 �� M

M − 1
�g

− 1. �31�

The obtained expressions for Tg
P and Tg

H are very important,
using which we will determine MFPT �T	g. To facilitate the
computation, we use �g to represent the set of nodes in Hg
and separate them into two subsets: one subset is �g−1 made
up of nodes in the original Hg−1, and the other subset, de-

noted by �̄g, is the set of nodes of the M −1 copies of Hg−1.
Let Ti�g� denote the trapping time for a walker originating at
node i on the gth generation network to first reach the trap
node �hub�. Obviously, for all g�0, T1�g�=0. For g=1, it is
a trivial case, we have T2�1�=T3�1�= ¯ =TM�1�=M −1.
Then, by definition, the MFPT �T	g can be expressed as

�T	g =
1

Ng − 1�
i=2

Ng

Ti�g� , �32�

where the sum term �i=2
Ng Ti�g� can be rewritten as
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�
i=2

Ng

Ti�g� = �
i=2

Ng−1

Ti�g� + �
i��̄g

Ti�g� = �
i=2

Ng−1

Ti�g − 1� + �
i��̄g

Ti�g� ,

�33�

which is obvious from the particular construction of the hi-
erarchical networks. Thus, we have

�T	g =
Ng−1 − 1

Ng − 1
�T	g−1 +

1

Ng − 1 �
i��̄g

Ti�g� . �34�

Hence, to obtain an exact solution for �T	g, all that is left is
to evaluate the sum in Eq. �34�, with a goal to first find a
recursive relation for �T	g. From Figs. 1 and 2, the sum term
on the rhs of Eq. �34� can be evaluated as follows:

�
i��̄g

Ti�g� = Tg
P�P� +

�P�
M − 1

�Tg
P + 1� + �

m=1

g−2

�M − 1�g−m−1

���Nm − 1��T	m + NmTm+1
H + NmTg

P� . �35�

Substituting previously obtained equations for the expres-
sions of related quantities in Eq. �35� and combining with
Eq. �33�, we can obtain the following recurrence relation for
�T	g:

�Ng+1 − 1��T	g+1 − M�Ng − 1��T	g

=
2�M − 1�2

M2 Mg
�3M − 2�� M

M − 1
�g

− M
 . �36�

Using the initial condition �T	2=M�M +2� / �M +1�, Eq. �36�
is solved inductively to obtain the rigorous expression for the
MFPT:

�T	g =
Mg−3�M − 1�

Mg − 1

�6M3 − 16M2 + 14M − 4�� M

M − 1
�g

− �5M3 − 10M2 + 4M� − 2g�M2 − M�
 . �37�

We have checked our analytic formula against numerical val-
ues obtained according to the fundamental matrix provided
by Eq. �17�. For different parameters M and g, the values
obtained from Eq. �37� completely agree with those numeri-
cal results on the basis of the direct calculation through Eq.
�17�; see Fig. 4. This agreement serves as an independent test
of our theoretical formula. Moreover, we have performed
genuine simulations of the random walk process on the hier-
archical networks. The data from the true process are shown
in Fig. 4, each of which is obtained by averaging over 10 000
realizations. The results of the true simulations are in excel-
lent agreement with our analytical ones given by Eq. �37�
and thus provide an important further evidence in favor of
our findings.

We continue to show how to represent MFPT in terms of
network order Ng with the aim to obtain the scaling between
these two quantities. Recalling Ng=Mg, we have g
=logM Ng. Hence, Eq. �37� can be rewritten as

�T	g =
M − 1

M3

Ng

Ng − 1
��6M3 − 16M2 + 14M − 4�

��Ng�1−�ln�M−1�/ln M� − �5M3 − 10M2 + 4M�

− 2�M2 − M�logM Ng� . �38�

Thus, for networks with large order, i.e., Ng→�,

�T	g � �Ng�	�M� = �Ng�1−ln�M−1�/ln M , �39�

where the exponent 	�M� is lower than 1. Clearly, 	�M� is a
decreasing function of M: when M grows from 3 to infinite,
	�M� descends from 1−ln 2 / ln 3 and approaches to zero,
which means that the efficiency of the trapping process de-
pends on M. The larger the value of M, the more efficient the
trapping process. Equation �39� also implies that in the infi-
nite network order Ng limit, the MFPT grows algebraically
with increasing order of the networks.

The above obtained scaling of MFPT with order of the
hierarchical scale-free networks is quite different from those
scalings for other media. For instance, on regular lattices
with large order N, the asymptotical behavior of MFPT �T	 is
�T	�N2, �T	�N ln N, and �T	�N for dimensions d=1,
d=2, and d=3, respectively �36�. Again for example, on pla-
nar Sierpinski gasket �37� and Sierpinski tower �38� in three
Euclidean dimensions, and the T fractal �39�, the MFPT �T	
scales superlinearly with network order; i.e., it grows as a
power-law function of network order with the exponents be-
ing 1.464, 1.293, and 1.631, respectively. Finally, for the
pseudofractal web �41�, the Koch network �42�, and the
Apollonian network �43�, they are all scale free, their MFPT
scales linearly or sublinearly with network order following
separately the asymptotical behaviors �T	�N, �T	�Nln 2/ln 3,
and �T	�N2−ln 2/ln 5. Thus, compared with the aforemen-
tioned regular networks, fractals, even scale-free networks,
the addressed hierarchical networks exhibit more efficient
configuration for random walks with a single trap fixed at the
node with highest degree.

The root of the high efficiency of the trapping problem on
the hierarchical scale-free networks lies in their architecture.
In this network family, there are many small densely inter-
connected clusters, which combine to form larger but less
compact groups connected by nodes with high degrees �i.e.,
local hub nodes�. The relatively large groups are further
joined to shape even larger and even less densely interlinked
modules. These modules or groups are combined again at a
“large” node forming a fine hierarchical structure that is re-
sponsible for the fast diffusion phenomenon, which can be
understood from the following heuristic argument. When a
walker starts off from some node, it will either hit the hub
directly or first get to local hub nodes. These local hubs,
although not connected to the trap node, play the role of
bridges linking different modules together at the local pe-
ripheral nodes through which the walker may easily find the
way to the trap. Thus, the walker can visit the trap in a short
time disregarding its starting points.

V. CONCLUSIONS

In conclusion, we have investigated the classic trapping
problem on a class of hierarchical networks that can bring
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under a single roof the scale-free and modular topologies,
which are two striking structural properties observed in vari-
ous biological and social networks. Thus, the hierarchical
networks can mimic some real-world natural and social sys-
tems to some extent �to what extent it does is still an open
question�. Using the method of generating functions, we de-
rived the recursion relations governing the evolution of the
MFPT for random walks on the networks with the only trap
located at the hub node. These recursive relations are ob-
tained from the special construction of the networks from
which we determined explicitly the solution for the MFPT,
which shows that the MFPT �T	g varies algebraically with
network order Ng as �T	g��Ng�	�M� with the exponent 	�M�
much less than 1 that decreases from 1−ln 2 / ln 3 to zero
when M increases from 3 to infinite. Thus, in the full range
of M, the efficiency of the trapping process on the hierarchi-
cal networks is high. We have also compared the result with
those previously obtained for other media and found that in
marked contrast to other graphs, the hierarchical networks

have more efficient structure that tends to speed up the dif-
fusion process. Finally, it deserves to be mentioned that al-
though the hierarchical networks are efficient for the trap-
ping problem with the trap fixed on the hub, they might lose
this characteristic when the trap is positioned at a randomly
selected node due to the somewhat treelike macrostructure of
this kind of networks �28,66�.
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